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ABSTRACT

A channcel with rectangular cross-section, 40 to | aspect ratio (height is 0.0127 m)
and 4.27 m test scction length (336 channel lengths) 15 used to study the cllects of im-
posed pulsations on laminar, transitional, and turbulent flow phenomena. Periodic ve-
Jocity variations are produced in the test section using a single rotating vanc located in
the flow downstrecam of the test section.  Survey data for Y/d of 0.50, 0.85, and 0,90
show how normalized average velocity and turbulence ntensity data vary with Revnolds
number for Revnolds numbers ranging from 1100 to 3400 at Stokes numbers of 4.08 and
5.79 and Strouhal numbers from 0.033 1o 0.121. These conditions are produced trom
pulsations imposed at | 11z and 2 [iz to show how transition develops both with and
without imposed pulsations. Intermittency variations increase from near zero to one as
Revnolds number changes from 1450 to 2100 for Y/d=0.90, 0.85, and 0.50. Timec-
averaged magnitudes of the normalized longitudinal turbulence intensity increase signif-
icantly as Re changes from 1450 to 3100 at Y/d=0.90. A maxima is reached near
Re= 2400. Afterwards these data show a decrease and level off in the turbulent region.
At Y/d=10.85, the same trend in normalized longitudinal turbulence intensity appcars
with a maxima appearing ncar Re=2300. For the center of the channel (Y,d=0.50), the
maXxima appears near Re=2000. The normalized longitudinal turbulence intensity level
in the turbulent region increases with Y/d. Of particular intcrest are conditions where
the normalized longitudinal turbulence intensity is greater near the center of the channel
than near the walls. This occurs for Reynolds numbers of 1500 to 2500. Spectra show
evidence of intermittency and drastic increases in fluctuating energy starting at Re= 1500

and continuing to Re= 1700.
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1. INTRODUCTION

A. BACKGROUND

Flow pulsations and unsteadiness are present in many practical engineering flow
situations. Most flows of technological interest also undergo transition from a laminar
to turbulent state. Transition is by itself extremely complex; however, with flow
pulsations and unsteadiness, accurate prediction of the location and extent of transition
and accompanying changes of important flow properties is even farther beyond present
computational modeling abilities. Consequently, experiments are necessary to elucidate
flow behavior. According to Shemer [Ref. 1], such experiments should be “restricted to
the simplest and most well-defined conditions” to “obtain a clear physical description of
a fluid dvnamical process.”

The present study employvs a straight channel to investigate a situation consistent
with Shemer’s suggestion. This flow is also studied because little experimental informa-
tion is available for transitioning flow in straight channels with imposed pulsations.
Some experimental results are published for pipe flows as well as limited analytic and
numeric results for channel flows; however, the author knows of no other experiments,
other than the continuing current work, performed to study the stability or transition
of plane channel flow with imposed pulsations.

Here, pulsations are induced with a single rotating vane located downstream of the
flow test section. The device is similar to the rotating profiled sleeves employed by Tu
and Ramaprian [Ref. 2], Ramaprian and Tu [Ref. 3] and Stettler and Hussain [Ref. 4] to
study the influences of sinusoidal pulsations on pipe flows. Their sleeves are used in
water and operate simply by altering the exit flow area. Other studies of influences of
imposed pulsations on pipe flows use reciprocating pistons in cylinders to produce
pulsations [Refs. 5,6,7, 8 ,9,10, 11 ]. Simpson et al [Ref. 12] use a rotating blade damper
syvstem at the inlet of their wind tunnel, upstream of screens and honevcomb, in order
to study the effects of pulsations on turbulent boundary laver flows. By changing the
motion of the five individual damper blades, sinusoidal perturbations to the flow are
produced with amplitudes amounting to 11-93 % of the maximum velocity over fre-
quencics from 0.6-2 Hz.

Of the experimental studies of transitional flows in pipes, Merkli and Thomann {Ref.
5], Sergeev [Ref. 6], Hino and Sawamoto [Ref. 7}, Hino et al [Ref. 8], Gerrard [Ref. 9],




Gilbrech and Combs [Ref. 10}, Sarpkaya [Ref. 11], Ramaprian and Tu [Ref. 3], Shemer
[Ref. 1] and Stettler and Hussain [Ref. 4] also examine the eflects of imposed pulsations.
Of these studies, [Refs. 5-8] investigate the instability of sinusoidally modulated pipe flow
with zero mean flow. Gerrard [Ref. 9] conducts his experiments at transition Revnolds
number of 3770. He relates variations of turbulent flow over individual flow pulsations
to magnitudes of vorticity diffusion. Gerrard also suggests that, with high pulsation
frequency, viscous effects are confined to a very thin Stokes layver near the wall where
the fluid is retarded. Gilbrech and Combs [Ref. 10] and Sarpkava [Ref. 11] examine the
effects of amplitude and frequency of imposed pulsations on the growth rate of arti-
ficially introduced plugs. Both investigators indicate that pulsations increase the critical
Revnolds number as long as they are not so large as to cause local flow reversals.
Ramaprian and Tu [Refl. 3] study transitional pipe flow at a mean Reynolds number of
2100. They indicate that flow pulsations at frequencies ranging from 0.05 to 1.75 Hz
increase the critical Reynolds number only when the turbulent intermittency is small.
“With higher intermittency levels, the authors suggest that imposed pulsations affect the
flow only when the pulsation {requency is near the characteristic frequency of the tur-
bulence. Shemer’s [Ref. 1] work focuses on large pulsation amplitudes at a single low
frequency. For a mean Revnolds number of about 4000 and a pulsation frequency of
0.37 Hz, he concludes that transition is governed primarily by the instantaneous
Revnolds number. Stettler and Hussain [Ref. 4] present results for Stokes numbers as
high as 70. The authors provide a three-dimensional map of stability-transition regimes,
and also indicate that transition in pipes is associated with plugs of turbulence which can
grow or shrink in size.

Numerical and analytical investigations of the influences of imposed pulsations on
flow in a plane channel are described by Grosch and Salwen {Ref. 13}, Herbert {Ref.
14}, Hall [Ref. 15}, von Kerczek [Ref. 16) and Singer, et al [Refs. 17,18]. In addition to
these studies, Tozzi [Ref. 19] provides results of a numerical investigation of the influ-
ences of imposed pulsations on flow in a pipe, and Davies [Ref. 20] provides a review
of much work done on the stability of time periodic flows. Of the above mentioned
analytic studies of plane channel flow, Grosch and Salwen [Ref. 13] solve a set of
linearized equations by integrating through one period of pulsation. They conclude that
flows with small amplitudes of imposcd pulsations arc more stable than steady flows,
where the degree of stabilization depends upon interactions between shear waves gener-
ated by the imposed pulsation and flow disturbances. A modified version of Grosch and
Salwen’s encrgy analysis is described by Herbert [Ref. 14]. Hall [Ref. 15] reports results




obtained with high frequency pulsations and concludes that such pulsations are slightly
destabilizing irrespective of amplitude. von Kerczek [Ref. 16] modulates the pressurce
gradient in a perturbation analysis, and shows that the oscillating flow is more stable
than the steady flow for frequencies of imposed pulsations greater than about one tenth
of the frequency of the steady flow neutral disturbance. However, at both very low and
very high [requencies of imposed pulsations, the flow 1s slightly unstable. Singer et al
[Refs. 17,18] describe results from a direct Navier-Stokes simulation of flow in a plane
channel with imposed pulsations and indicate that imposed sinusoidal pulsations provide
a stabilizing efTect at all but very low frequencies. Significant variations in the ampli-
tudes of Tollmein-Schlichting waves are also noted which depend upon the Strouhal
number and the amplitude of the pulsations, as well as on initial amplitudes of the
Tollmein-Schlichting waves. Tozzi's [Ref. 19] study of pipe flow shows that imposed
pulsations are stabilizing up to very high amplitudes of imposed pulsation.

B. OBIJECTIVES

This study provides experimental data which show the influences of imposed
pulsations on laminar, transitional, and turbulent flows in a rectangular cross-section
channel with 40 to 1 aspect ratio and L/d of 336 (d = 0.0127m). The imposed pulsation
device emploved is based on existing designs, but here is applied to channel flow with
air. Mean streamwise velocity and longitudinal turbulent intensity velocity data as a
function of Reynolds number for various pulsation frequencies are given for three lo-
cations across the channel height. The current study is complementary to the work of
Morrow [Ref. 21} and is an extension of work by Koth [Ref. 22], Coumes [Ref. 23], and
Longest [Ref. 24]. These previous studies found imposed pulsations at 1 and 2 Hz to
have a greater destabilizing effect on the longitudinal velocity fluctuations in the Stokes
layer at some Reynolds numbers than observed in the present study. The present results
are given for Strouhal numbers from 0.039 to 0.121, and Revnolds numbers ranging from
1100 to 3400 (V,, from 1.3 to 4.1 m’s), where each is based on bulk mean velocity and
channel height. To produce these conditions, pulsations are imposed on the flow at
frequencies of 1 Hz and 2 Hz. These imposed pulsation frequencies correspond to
kinematic viscosity based Stokes numbers of 4.08 and 5.79, respectively.




C. THESIS ORGANIZATION

In the chapters that follow, the experimental facilities, including the channel, un-
steadiness device and data acquisiiion system, are dctailed in Chapter 11. The exper-
imental procedures for calibration of the hot-wire probe, channel validation, flow
mecasurement and spectral analysis are described in Chapter III. Results are discussed
in Chapter 1V. A summary of results and conclusions appear in Chapter V.




II.  EXPERIMENTAL FACILITIES

A. CHANNEL

The straight channel was specifically designed for the present study and is located
in the laboratories of the Deparument of Mechanical Engineering of the Naval Post-
graduate School. Figure 1 is a schematic of the channel, and the coordinate system
emploved. x is the longitudinal coordinate measured [rom the downstream edge of the
nozzle, v is the normal coordinate measured from the bottom wall, and z is the trans-
verse coordinate, measured from the spanwise centerline of the channel.

The test section of the channel is 4.27 m long, 1.27 cm high and 50.8 cm wide (inside
dimensions). This gives an internal aspect ratio of 40 to 1. The top and bottom walls
are 6.35 mm thick lexan supported by ribs and cross beams along their length. The side
walls are removable for access to the inside of the channel. Inlet flow is managed with
a honeycomb, screens and a 20:1 contraction ratio nozzle. Two lavers of cheese cloth
are also placed at the inlet to remove dust and dirt from the entering air. At the test
section exit are three 10.16 cm long frames. Screens are between the flanges of the
frames and honevcomb is placed just upstream of the last screen. The unsteadiness de-
vice is housed in the middle frame. A two-dimensional diffuser (45.72 cm long, 3 degree
total angle), located downstream of the honeycomb section, connects the straight section
to the exit plenum. This plenum provides a uniform volume of low pressure air at the
diffuser exit. The plenum is a cube with inside dimensions of 60.96 cm along each side
and is connected to the suction side of a 5 hp blower via piping of 5.08 cm inside diam-
eter. Flow through the channel is metered by a 3.81 cm orifice plate assemblv located
near the plenum exit. The channel is rigidly mounted on steel frames with supporting
ribs along its length. With this mounting arrangement, no measurable deflection of the
channel walls occurs with either steady or pulsating flow. Vibration damping systems
are emploved on the mounting frame and test section to further reduce vibrations due
to mechanical sources. Additionally, all results are obtaincd at night with no other ac-
tivity in the laboratory to minimize disturbances from acoustic sources.

Channel bulk flow velocities (1/,,) of 15 m's are possible; however, the present study
uses a range of V,, from 1.3 to 4.1 m's. The channel is designed so transition will occur
after laminar flow has developed fully. The measured turbulence intensity of the flow
at the nozzle exit (Figure 7)is 0.12 to 0.14 percent for Reynolds numbers less than 2100




with no imposed pulsations, as well as with pulsations imposed at 1, 2, 3, and 4 Hz.
As Re increases to 3600, inlet intensitics both with and without imposed pulsations are
slightly higher (0.17 to 0.24 percent).

B. UNSTEADINESS DEVICE

Periodic varnations of the flow rate can be induced in the test sections of the wind
tunncls, channel flows and pipe flows by introducing a perodic blockage at the inlct or
exit of flow passages. The most important requirement of such an unsteady device is the
ability to produce controlled deterministic and penodic unsteadiness without adding
other disturbances. In an open circuit induction channel, the unsteady device is best
located just downstream of the test section, thereby eliminating convection of wakes and
other flow disturbances into the test section.

A single rotating vane is used to impose pulsations in the present study, as shown
in Figure 2. A single vane makes this possible since the interior height of the channel
is relatively small (1.27 cm). The vane is a 3.2 mm thick brass strip with rounded edges,
and is supported at the ends by a 3.2 mm diameter shaft with bushings fitted to the side
walls of the frame. Three intermediate spanwise struts increase the rigidity of the vane
as it rotates. One of the shafts extends to accommodate a 48 tooth spur gear driven by
a 12 tooth spur pinion mounted on the shaft of a Superior Electric, M092-FD310
Stepper Motor. The motor is driven by a Modulynx MITAS PMS085-D050 Drive
controlied by a Modulynx MITAS PMS085-C2AR Drive Controller. This arrangement
allows the motor shaft to be positioned at 1,200th increments of one motor shaft revo-
lution. The 1 to 4 gearing ratio, coupled with two cycles of imposed flow pulsations per
vane rotation, gives one motor revolution corresponding to one half of one cycle of an
imposed flow pulsation. The imposed pulsation frequency is set by programming the
Drive Controller for a particular motor speed which then sets the vane rotation rate.
The amplitude of the imposed pulsations is altered by changing the width of the vane.
A vane width of 8.7 mm is employved in the present study.

When the vane rotation rate is small enough, the vane produces a quasi-steady flow
and the flow bchaves as if the vane were fixed at each position and allowed to reach
steady state behavior. The variation of the mean velocity under such circumstances is
approximately sinusoidal, as illustrated in Figure 3. This waveform results because,
momentarily, mass flow rates (and resulting velocities in the straight test section) are
roughly proportional to the flow passage arca provided by the vane as it rotates. In

Figure 3, flow resistance is maximum and velocity in the straight section is minimum




when the vane is normal to the flow with position 2. With vane position 4, thc flow
resistance is minimum and the velocity is maximum.

Actual flow around the rotating vane is quite complex. Velocity and pressure vari-
ations are affected not only by the varving flow resistance from the vane, but also by
other fluid dvnamic efTects such as dynamic flow separation and flow inertia. At large
vane speeds, the vane rotations will likely result in a local swirl with blockage like a solid
cvlinder and minimal bulk flow periodicity. Imposcd oscillatory flow behavior is thus
different and difficult to predict compared to quasi-steady flow. The assessment of the
performance of the rotating vanc as it produces imposed velocity pulsations in the test

section is given by Ligrani, et al [Ref. 25].

C. FLOW MEASUREMENT INSTRUMENTS
Figure 4 presents a schematic of the flow measurement equipment.
1. Hot-wire Anemometer

A DANTEC 55P51 hot-wire probe, with sensor diameter of Sum and sensor
length of 1.25 mm, is used for instantancous velocity measurements. The probe is
mounted with the wire horizontal and normal to the flow direction. The probe position
is controlled by a rotatable lever arm which can adjust through a range of Y'd of 0.05
to 0.95. The lever arm is calibrated for probe positioning with an accuracy of approxi-
mately 0.5 mm with respect to the ¥ coordinate. For all measurements presented, the
probe is located 3.74 m from beginning of the test section and 97.6 mm left of spanwise
center. These are equivalent to x'd=294.5 and z’d=7.7.

2. Hot-wire Bridge, Signal Conditioner, High Speed Data Acquisition System and
Data Storage

A DISA 55M10 constant temperature bridge is used to operate the hot-wire
probe at an overheat ratio of 1.8. When connected to this bridge with the same settings
used for measurements, the hot-wire is calibrated in the potential flow of a wind tunnel.
Du-ing mecasurement, the DC voltage from hot-wire bridge is measured using a
Hewlett-Packard 3466A digital multimeter.

A DANTEC Modcl 56N20 signal conditioner is used to amplifv and filter the
voltage from the bridge. During measurements, an amplificr gain of 10 is used, the
low-pass filter is set to 10kHz and the high pass filter is set at 0.1 Hz to remove high
frequency noise signal as well as the DC signal. The output of the signal conditioner is
fed to a Hewlett- Packard 6944 Multiprogrammer with a buflered high speed A'D con-

version system. The Multiprogrammer cards are driven using Hewlett-Packard




CAT 14752A software on a Hewlett-Packard 9000 series Model 310 computer.
Digitized instantaneous voltages are stored on 3.5 inch diskettes for further processing.
The heading to each data sct includes the time, date, bulk velocity, pulsation frequency,
and average voltage {rom the digital multimeter.
3. Phase-Averaging

The motor used to drive the vane generates voltage pulces sequentially in each
of the four field windings used to step the motor. Fiftv pulses are available to each ficld
winding for each revolution of the motor shaft, giving a total of 200 pulses per revo-
lution. The pulses from one of the four field windings are used to trigger the data ac-
quisition and are precisely synchronized with the vane rotation. Thus, for a given vane
imposed pulsation frequency, f,,,, the data sampling rate (TR) is given by:

TR(samples.'sec)=
fue x (pulses/motor shaft rev.) x (motor shaft rev./imposed pulsations)

=f,x50x2
=100 x f,,

With this approach, 100 samples of data are obtained, spaced uniformly, over each pe-
riod of flow pulsation, providing a phase resolution of 1/100 of the imposed pulsation
cycle.

Data are acquired for 640 sequential flow pulsations so that the memory bufler
of the multiprogrammer (64 kbytes) is completely filled. Afterwards, data are stored in
the computer memory, where they are packed into 640 arrays of 100 samples each. Data
are then stored on a disk for later processing. Because non-uniform width voltage pulses
may be gencrated by the motor drive as the motor is started and stopped, the first 6000
points are ignored as data are processed, and all acquisitions are completed well before
the vane motor is stopped. When no pulsations are imposed on the flow, data acquisi-
tion is triggered using a signal from a square wave function generator set to the same
frequency as employved with imposed pulsations.




1Il. EXPERIMENTAL PROCEDURES

A. HOT-WIRE CALIBRATION

The hot-wire is calibrated in the freestream of the wind tunnel located in the labo-
ratories of the Mechanical Engineering Department of the Naval Postgraduate School.
During calibration, the hot-wire probe is mounted normal to the flow in potential
freestream flow and connected to the hot-wire bridge discussed previously. Output from
the hot-wire bridge is read on a Keithly 169 Digital Multimeter. Freestream velocity in
the wind tunnel is measured utilizing a Kiel pressure probe, a wall static pressure tap,
and a Validyne PS 309 Digital Manometer. Voltage and differential pressure readings
are taken for a range of pressure drops corresponding to velocities between 1.0 and 4.0

m's. Following the calibration, the hot-wire is installed in the straight channel.

B. DATA PROCESSING
1. Bulk Velocity
The bulk flow velocity is determined {rom the pressure drop across the orifice
plate located in the outlet piping which connects the outlet plenum and the blower. The
channel Reynolds number and channel Strouhal number are then determined using this
bulk flow velocity. The pressure drop is measured using a Validyne Model PS 309 Dig-
ital Manometer. Figure 5 shows the relationship of bulk velocity to pressure drop.
2. Instantaneous Velocity and Phase Averaging
Instantaneous voltages are converted into instantaneous velocities using a
look-up table that accounts for hot-wire calibration coefficients, amplifier gains and
mean voltage levels. With imposed periodic flow, instantaneous velocities are given by
U = u+u+u’, where T is the time-averaged velocity, u is the periodic velocity, and u’
is the fluctuating component.
In the present study, uand U are combined as the phase-averaged velocity
(1), such that U = u+u’, following Ramaprian and Tu [Rel. 3}. Thus for a steady flow
with no periodic velocity, U is then equal toU. U is then determined from phase-
averaging instantancous velocity results using the equation given by :

ncyel

R ] .
u(m) || = —— 3 U(m,n) |'%
()12 = o T Ul 1%



Here, m and n correspond, respectively, to the number of cycles and locations across
each phase where data are sampled. Typically 580 cycles are ensemble averaged to ob-

tain a phase-averaged velocity trace.

C. SPECTRAL MEASUREMENTS

Spectra of analog voltages from the hot-wire bridge are determined using a
Hewlett-Packard Model 3562A Dynamic Signal Analyzer (DSA). Spectral coordinates
are log ((volts)¥frequency (Hz) versus frequency (11z)), where frequency varies from 0
to 200 Hz. Typical settings of other parameters are shown in Figure 31. With this ar-
rangement, five sequential spectra are ensemble averaged to produce final results ob-
tained for Revnolds numbers between 1400 and 1700.
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1V. DISCUSSION OF RESULTS
A. CHANNEL FLOW DEVELOPMENT LENGTHS

Streamwise pressure distributions are shown in Figure 6 for Re= 1100, 2010, and
3600. Streamwise pressure gradients are constant and invariant with streamwise distance
for x’d > 55, x'd > 103, and x'd > 170 for Reynolds numbers of 1100, 2010, and 3600,
respectively. Such behavior evidences fullv developed flow, which, if present, gives nor-
malized velocity profiles which are self-similar with respect to streamwise distance.
These results are in close agreement with empirical values for duct flow given by Han
[Ref. 26]. Schlichting [Ref. 27], using laminar theory, gives x/d development lengths of
44 for Re= 1100 and 146 for Re=3600.

B. REYNOLDS NUMBER SURVEY OF IMPOSED PULSATION EFFECTS

Reynolds number surveys of mean streamwise velocity and longitudinal velocity
fluctuations are presented for Y, d values of 0.50, 0.85, and 0.90 both with and without
imposed pulsations. These surveys are based on the same profile data presented by
Morrow [Ref. 21] at x'd=294.5 and zd="17.7.

1. Local Mean Streamwise Velocity

Figure 8 through Figure 10 show the dimensional local mean streamwise ve-

locity as a function of Revnolds number for Y/d of 0.50, 0.85, and 0.90. Additional
Reynolds number surveys are given in Figure 11 through Figure 13, which show local
mean streamwise velocity normalized with respect to bulk velocity, while in Figure 14
and Figure 15, data are normalized with respect to centerline velocity. In each figure,
except Figure 11, velocity increases with Reynolds number in the laminar and transi-
tional regimes with less dependence on Revnolds number in the turbulent region. Such
incrcases are largest at Y,d=0.50. In each regime, at a particular Re, dimensional and
normalized velocities decrease with increasing Y,d, as expected. In each of the figures,
data in the transition region from Reynolds numbers of about 2100 to 2500 show some
experimental scatter.

2. Longitudinal Turbulence Intensity

Dimensional longitudinal turbulence intensity data are shown in Figure 16

through Figure 18. The turbulence intensity data are normalized with respect to

centerline velocity in Figure 19 through Figure 21 and with respect to local average
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velocity in Figure 22 through Figure 24. Turbulence intensity data for all three lo-
cations increase with Revnolds number in the transition region (Re= 1450 to 2500) with
less dependence on Revnolds number in the turbulent regime when Re becomes greater
than 2500. Local maxima appear from Re= 2000 to Re= 2400 in each figure which in-
crease in magnitude with Y'd. In Figure 19 through Figure 21, normalized turbulcnce
intensity data show similar qualitative behavior.

Imposed pulsations at 1 Hz have negligible effect on magnitudes of turbulence
intensity survey, however with 2 Hz pulsations, intensities with imposed pulsations at
Y d=0.50 are lower than values without pulsations for Revnolds numbers from 2400 to
2500 (Figure 22). These variations are not seen at either of the other Y.d locations
studied. Thev are belicved to result becausc of destabilization at 2 Hz resulting in earlier
onset of fully turbulent flow with less local intensity.

3. Normalized Phase-Averaged Velocity Magnitudes

Figure 25 and Figure 26 show vanations in peak-to-peak amplitudes of phase-
averaged velocities normalized with respect to bulk mean velocity (Au/V,,) as a function
of Revnolds number. In each of these figures, the data without pulsations 1s presented
for comparison with imposed pulsc:ion data. The | Hz survey (Figure 25) shows little
effect of imposed pulsation on Au/V,,, whereas the 2 Hz survey (Figure 26) shows an
increase in Au/V,, with Reynolds number with local maxima apparent near Re= 2000
and Re= 2450 for all three Y. d locations. The maxima ncar Re=2450 is greates. in
magnitude. Smaller maxima ncar Re=2000 and Re=2450 are also visible in the 1 Hz
survevs.

4. Intermittency

Figure 27 shows turbulence intermittency as a function of Reynolds number for
each channel Y/d location of interest at imposed pulsation frequencies of 0, 1, and 2 Hz.
The intermittency values ( y ) are calculated from instantaneous second derivatives of
streamwise velocity with respect to time. The second time derivative is calculated nu-
merically using the finite difference method. This value is then compared to a threshold
value in an on-off temporal identification function, ID, defined such that :

¢l
cu

ID = 1,if > Thr (flow turbulent)

and :

ID = 0, otherwise (flow non-turbulent).
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Intermittency is then the percent of the time that the flow is fully turbulent. The inter-
mittency threshold, Thr, is given by :

Thr = {105 - (64.66 x (V,, —1.89))}

This approach produces results as scen in Figure 27. Values for 2 Hz pulsations range
from 0.5 to 0.8 at low Revnolds numbers (in the laminar region) depending on channel
location. These values cannot be belicved since one expects y to be nearlv zero when
flow 1s fully laminar.

In order to provide more reasonable intermittency results, another method for
computing the turbulence threshold is employed. Since similar intermittency trends are
evident for each Y.d position, the new threshold is determined at the centerline and then

taken to be_valid for the other positions. To do this, average second time derivatives
&L
ct?
time derivative for each case (0 and 2 Hz) multiplied by a factor of 0.01 as a function

. ) for the 0 and 2 Hz cases are determuned. Figure 28 shows the second

of velocity (

of bulk mean velocity (and consequentlv Reynolds number). The threshold algorithm
as described above is also presented in this figure. To determine the threshold factor,
results for the 0 1z case shown in Figure 27 are considered to be valid. The value of
the original threshold algorithm at a given bulk velocity is divided by the average second
time derivative of velocity to give the new threshold factor, T.F. T. F. values as a
funcion of bulk velocity are then shown in Figure 29. A curve is then fit, as shown, to
express the threshold factor as a function of the bulk mean velocity. This curve is given
by :

-

T.F. = 25314V}, - 13.331V,, + 17412

thus :

oL

Thr = T.F. x —=
ov

With this approach, “corrected” intermittency survey results are shown in
Figure 30 for pulsations at 0 and 2 Hz. In this figure, data for both the 0 and 2 Hz cases
show intermittency varying from O to 1 as Revnolds number increases from 1550 to
2050.
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5. Spectral Measurements
Spectral measurements are presented in Figure 32 through Figure 36 for
Y:d=0.90 at Revnolds numbers from 1400 to 1700 and pulsation frequencies of 0, 1, 2,
3, and 4 Hz. Figure 31 shows the dvnamic signal analyzer (DSA) settings for spectral
measurement. At Re= 1530, with no imposed pulsations, spectra show "humps” sinular
to ones resulting from spectra of time traces having Dirac delta functions. These corre-
spond 10 intermittent turbulent events. As the flow is subjected to pulsation, the tran-
sitional or critica] Reynolds number decreases, displaying increasing overall spectral
energy levels ncar Re= 1500.
6. Phase Average Velocity and Turbulence Intensity Traces
Figure 37 through Figure 76 show phase-averaged velocity and turbulence in-
tensity traces for Y/d=0.85 at 0 and 2 Hz produced as discussed in Appendix A.
Phase-averaged traces for 2 Hz pulsations (Figure 57 to Figure 76) show sinusoidal
behavior at low Reynolds numbers which become distorted as Reynolds number in-
“creases. As the bulk mcan velocity and local average velocity increase with Re, the im-
posed pulsations show smaller percent-wise variations on instantaneous velocity traces.
Increased turbulence levels are more apparent on instantaneous velocity traces and

phase-averaged traces are increasingly distorted.
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V. SUMMARY AND CONCLUSIONS

This study examines laminar, transitional, and turbulent flows in a 40 to 1 aspect
ratio straight channel at Revnolds numbers {rom 1100 to 3400. The study also investi-
gates the influences of pulsations imposed on the flows at frequencies of 1, 2, 3, and 4
Hz. Data are presented for Y/d locations of 0.50 (centerline), 0.85, and 0.90. Stokes
numbers are 4.08 and 5.79, and Strouhal numbers vary {rom 0.039 to 0.122.

Local average velocity surveys, both dimensional and normalized, are largely unaf-
fected by imposed pulsations. Longitudinal turbulence intensity levels for the three lo-
cations show increases with Revnolds number from Re= 1100 to Re=2200, and then
show decreases with Revnolds number from 2200 to 2500. Afterwards, smaller vari-
ations with Re are apparent as the flow becomes fully turbulent at Re>2500. Longi-
tudinal turbulence intensity values which are higher at the channel centerline than near
the wall evidence a center mode of transition for Re from 1200 to 1500 (Zang and Krist
{Ref. 28]). Maximum turbulence intensity values observed near Re= 2200 increase with
Y'd, as does the turbulence intensity in the fully turbulent region.

For Reynolds numbers from 2350 to 2450, iriposed pulsations at a Stokes number
of 5.79 (2 Hz) result in decreased normalized turbulence intensity values compared to
values seen at 0 and 1 Hz. This is believed to occur because pulsations destabilize the
flow, an eflect not scen for 1 Hz pulsations, perhaps because of their lower amplitudes.

Spectral measurements show overall energy level increases to occur between Re of
1500 and 1550, depending on pulsation frequency. Spectra show evidence of intermit-
tency at Re of 1550 for imposed pulsations at 0, 1, 2, 3, and 4 Hz. Intermittency values
for no imposed pulsations and for 2 Hz imposed pulsations increase from 0 to 1 as Re
increases {from 1450 to 2100.

Phase-averaged velocity traces show sinusoidal behavior over low Re below 1750.
As the Reyvnolds number increases, sinusoidal traces become more distorted at Re of
1850 to 2200 in the transition regime, and at higher turbulent Re when turbulence in-
tensity levels increase. Amplitudes (pcak-to-peak) of phase-averaged traces show im-
portant variations with Re. With 2 Hz imposed pulsations, local maxima are evident
near Re of 2000, 2200, and 2430.
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APPENDIX A. SOFTWARE DIRECTORY

DEANI15: Determines channel mass flow rate, bulk velocity and Reynolds number
from orifice plate pressure drop. The program requires ambient temperature and pres-
sure inputs which can be entered manually or via a data acquisition system connected
to thermocouples and,;or pressure transducers. Once ambient conditions are established,
air density is calculated and orifice pressure drop is entered manually. Originally de-
signed for curved channel applications, this version has been specifically modified for
straight channel use.

HWCAL : Determines the constants for the King's Law calibration of the hot-wire.
The program also provides a polynomial fit of the calibration data. The version used is
written for the IBM 310 mainframe computer.

HOTWIREPAV : Rcads the data stored in the A/D buffer of the high speed data
acquisition system and stores the information on micro diskettes. Manual inputs are : .
triggering frequency, hot-wire DC voltage (ungained), oscillation frequency (flow
blockage), bulk velocity, Revnolds number, and date and time of run.

DATAP : Calculates instantaneous and phase-averaged velocities. Initially a look
up table is created. Effective velocities are calculated from the effective voltage values
and stored for follow-on calculations. The hot-wire calibration constants obtained from
HWCAL, and the amplifier gain are incorporated into these calculations. The velocity
calibration is given by :

where Kk is the proportionality constant, E,, is the eflective voltage, and E, is the refer-
encc voltage at no flow. N is a constant (0.45) for moderate Revnolds numbers. Once
the look up table is created, the program reads the instantaneous voltage values from the
data file and converts them to instantanecous velocities. A plot of the instantaneous ve-
locity versus time can be gencrated for any of 580 cycles (the first 60 cycles are discarded
to allow for flow stabilization as the unsteady device is started).

Next the program phasc averages the 580 cycles, and velocity versus phase angle (of
the flow blockage) plots arc available. Two plots are available from the averaged
values : u versus phase anglc and N w1 /U versus phase angle. U is the phase averaged
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velocity, 0" is the phase averaged root mean squared (rms) velocity, and U is the av-
erage velocity. In the case where there is no imposed unsteadiness, the phase averaged
velocity, U, is equal to the time averaged velocity, U.

INTRMTCY : Takes data recorded by HOTWIREPAYV and computes the inter-
mittency. It uses the second time derivative of the instantaneous velocity, which is cal-
culated numerically using the finite differcnce method. This value is then compared to
a threshold value in an on-off temporal xdcntlﬁcauon function, 1D, defined such that :

ID = 1,if ,\2 > Thr, and
ID = 0, otherwise.
The threshold factor, Thr, is determined for different Reynolds numbers using the

correlation :
Thr = {105 - (64.66 x (V,,— 1.89))}

If the Thr value falls less than 20 then its value is reset to 20. The values of 1D are then
phase averaged and time averaged for the traces and mean intermittency value, y . This
approach produces results which are reasonable for all but the 2 Hz imposed pulsation
case.

In order to provide more reasonable results for intermittency, the method for com-
puting the turbulence threshold is modified. Since the intermittency surveys show a
similar trend for each Y/d position, the modification approach for the threshold is done
at the centerline and taken to be valid for the other positions. The new threshold 10ld algo-
) for
the 0 and 2 Hz case. The goal is to obtain a “threshold factor” to multiply the second

rithm requires investigation of the average second time derivative ol velocity (

time derivative since the intermittency is a function of the magnitude of the second time
derivative as well as the bulk Reynolds number.

The approach for determining the threshold factor assumes the results for the 0 Hz
case to be valid. The value of the original threshold algorithm at a given bulk velocity
is divided by the avcrage second time derivative of velocity. This is the threshold factor,
T.F. A curve is then fit to express the threshold factor as a function of the bulk mean
velocity. Now :

Thr = T.F. x &L

(o))
-~
~
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where :
T.F. = 2.5414V}, — 13.331V,, + 17.412
Since the threshold modification approach produces reasonable results for the 0 Hz case,

which had previously been belicvable, it is assumed that the modification of Thr will
have no significant effect on the 1 Hz case.
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APPENDIX B. FIGURES
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SCHEMATIC OF FLOW MEASUREMENT EQUIPMENT
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Figure 4. Flow Measurement Equipment
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Orifice Differential Pressure Calibration
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Spectral Frequency Response (1 Hz)

Figure 33.
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Figure 34. Spectral Frequency Response (2 Hz)
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Figure 46. Average and RMS Velocity Traces (Y/d= 0.85, Re = 2040, 0 Hz)
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Figure 51. Average and RMS Velocity Traces (Y/d = 0.85, Re= 2400, 0 Hz)
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Figure 60. Average and RMS Velacity Traces (Y/d= 0.85, Re= 1440, 2 Hz)
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Figure 61. Average and RMS Velocity Traces (Y/d=0.85, Re= 1550, 2 Hz)
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Figure 62. Average and RMS Velocity Traces (Y/d=0.85, Re= 1710, 2 Hz)
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Figure 63. Average and RMS Velocity Traces (Y/d=0.85, Re= 1850, 2 Hz)
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Figure 64. Average and RMS Velocity Traces (Y/d = 0.85, Re= 1920, 2 Hz)
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Figure 66. Average and RMS Velocity Traces (Y/d=0.85, Re = 2040, 2 Hz)
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Figure 67. Average and RMS Velocity Traces (Y/d= 0.85, Re= 2090, 2 Hz)
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Figure 68. Average and RMS Velocity Traces (Y/d= 0.85, Re = 2200, 2 Hz)
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ligure 70.  Average and RMS Velocity Traces (Y/d=0.85, Re= 2350, 2 Hz)
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Figure 72. Average and RMS Velocity Traces (Y/d=0.85, Re= 2450, 2 Hz)
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Figure 73. Average and RMS Velocity Traces (Y/d= 0.85, Re = 2500, 2 Hz)
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Figure 74. Average and RMS Velocity Traces (Y/d=0.85, Re= 2800, 2 Hz)
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Figure 75. Average and RMS Velocity Traces (Y/d=0.85, Re= 23100, 2 Hz)
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Figure 76. Average and RMS Velocity Traces (Y/d=0.85, Re= 3400, 2 Hz)
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